Distinct affinity of nuclear proteins to the surface of chrysotile and crocidolite

نویسندگان

  • Yurika Kubo
  • Hiroyuki Takenaka
  • Hirotaka Nagai
  • Shinya Toyokuni
چکیده

The inhalation of asbestos is a risk factor for the development of malignant mesothelioma and lung cancer. Based on the broad surface area of asbestos fibers and their ability to enter the cytoplasm and nuclei of cells, it was hypothesized that proteins that adsorb onto the fiber surface play a role in the cytotoxicity and carcinogenesis of asbestos fibers. However, little is known about which proteins adsorb onto asbestos. Previously, we systematically identified asbestos-interacting proteins and classified them into eight sub-categories: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. Here, we report an adsorption profile of proteins for the three commercially used asbestos compounds: chrysotile, crocidolite and amosite. We quantified the amounts of adsorbed proteins by analyzing the silver-stained gels of sodium dodecyl sulfate-polyacrylamide gel electrophoresis with ImageJ software, using the bands for amosite as a standard. We found that histones were most adsorptive to crocidolite and that chromatin-binding proteins were most adsorptive to chrysotile. The results suggest that chrysotile and crocidolite directly interact with chromatin structure through different mechanisms. Furthermore, RNA-binding proteins preferably interacted with chrysotile, suggesting that chrysotile may interfere with transcription and translation. Our results provide novel evidence demonstrating that the specific molecular interactions leading to carcinogenesis are different between chrysotile and crocidolite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased focal adhesion kinase- and urokinase-type plasminogen activator receptor-associated cell signaling in endothelial cells exposed to asbestos.

Exposure of low-passage endothelial cells in culture to nonlethal amounts of asbestos, but not refractory ceramic fiber-1, increases cell motility and gene expression. These changes may be initiated by the fibers mimicking matrix proteins as ligands for receptors on the cell surface. In the present study, 1- to 3-hr exposures of endothelial cells to 5 mg/cm2 of chrysotile asbestos caused marked...

متن کامل

Vitronectin adsorption to chrysotile asbestos increases fiber phagocytosis and toxicity for mesothelial cells.

Biological modification of asbestos fibers can alter their interaction with target cells. We have shown that vitronectin (VN), a major adhesive protein in serum, adsorbs to crocidolite asbestos and increases fiber phagocytosis by mesothelial cells via integrins. Because chrysotile asbestos differs significantly from crocidolite in charge and shape, we asked whether VN would also adsorb to chrys...

متن کامل

Studies using lectins to determine mineral interactions with cellular membranes.

Chrysotile asbestos interacts with mucin-secreting cells of tracheal organ cultures, causing an increase in secretion of mucin into the culture medium. This response occurs in the absence of obvious morphologic damage to tracheal epithelial cells. We speculated that asbestos-induced hypersecretion was regulated by the interaction of fibers with specific carbohydrate residues on the cell surface...

متن کامل

Demonstration of nitric oxide on asbestos and silicon carbide fibers with a new ultraviolet spectrophotometric assay.

Nitric oxide (NO) has a number of important functions in biological systems and may play a role in the toxicity of mineral fibers. We investigated whether NO might be present on the surface of mineral fibers and if crocidolite could adsorb NO from NO gas or cigarette smoke. NO was determined with a new gas chromatography-ultraviolet spectrophotometric technique after thermal desorption from the...

متن کامل

Case-control study of mesothelioma in South Africa.

BACKGROUND South Africa has, uniquely, mined, transported, and used crocidolite, amosite, and chrysotile. A multicenter case-control study was done in South Africa to examine the details of asbestos exposure in cases and controls, and to calculate relative risks for level of certainty of asbestos exposure, nature of exposure (e.g., environmental, occupational) and fiber type. METHODS Cases an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2012